A Semi Distributed Task Allocation Strategy
for Large Hypercube Supercomputers *

Ishfaq Ahmad

* Best Student Paper Award - Systems

School of Computer and Information Science,
Syracuse University, Syracuse, NY 13244
Arif Ghafoor
Department of Electrical and Computer Engineering
Syracuse University, Syracuse, NY 13244

Abstract

This paper presents a semi distributed approach for task
scheduling in large parallel and distributed systems which is differ-
ent from the conventional centralized and fully distributed ap-
proaches. The proposed strategy partitions the system into inde-
pendent regions (spheres) centered at some control points. The
central points called schedulers, optimally schedule tasks within
their spheres and maintain state information with low overhead.
We consider Hypercube systems for evaluation and using its alge-
braic characteristics, show that identification of spheres and their
scheduling points is an NP-complete problem. An efficient solu-
tion for this problem is presented by making an exclusive use of a
combinatorial structure known as Hadamard Matrix. Perform-
ance of the proposed strategy was evaluated and compared with an
efficient fully distributed strategy, through simulation. In addition
to yielding high performance in terms of response time, better re-
source utilization and throughput, the proposed strategy is shown
to incur small overhead in terms of network traffic.

1. Introduction

As a result of evolutionary advancements in computation and
communication technology, one can foresee future supercomput-
ers consisting of thousands of processors [8]. In addition to pro-
viding enhanced availability, reconfigurability and resource shar-
ing, these massively parallel systems can theoretically multiply the
computational power of a single processor by a large factor. The
key advantage of such systems is that they allow concurrent execu-
tion of tasks which can be independent programs or partitioned
modules of a single program. From a performance perspective,
task response time, throughput and better resource utilization are
critical measures that need to be optimized while keeping the con-
trol overhead within a reasonable value. These performance mea-
sures pose many challenges, one of whichis an efficient scheduling
of tasks on the computing nodes. Inefficient scheduling can lead to
aload imbalance on various nodes which can significantly increase
the response times of tasks scheduled at heavily loaded nodes.
Dynamic task scheduling has gained considerable attention {5},
[6], [7], [11], [23] as a technique to overcome this problem since it
takes into account the time dependent fluctuations in the load pat-
terns across the system. Most of the existing dynamic scheduling
strategies are, in essence, based on two extreme solutions, that is
centralized [7], [20] and fully distributed models [1], [6], [11], [15],
[22].

In this paper we propose a new approach that is semi-distri-
buted in nature. With this approach, we introduce the notion of

CH2916-5/90/0000/0898/$01.00 © IEEE

898

sphere of locality where each sphere, with a central control, is a,
group of nodes. Accordingly, a scheduling algorithm is presented
that is executed by only a set of nodes, called schedulers. Each
sphere is centered at a scheduler for that sphere and each center is
at equal distance from all other, except one, centers. Tasks are opti-
mally scheduled within the sphere or transported to other spheres,
if required. We also propose an information building algorithm
that keeps the accurate information about load distribution within
a sphere. Both scheduling and information building algorithms
have low overheads. The number of schedulers which need to ex-
ecute the scheduling and information building algorithm is rela-
tively small — incurring a low control overhead. At the same time
the schedulers are sufficiently enough to effectively manage load
within their spheres. We show that, in general, optimal determina-
tion of the centers or schedulers is an NP-complete problem.
However, for Hypercube networks, we propose an efficient semi
distributed design based on a combinatorial structure known as
Hadamard Matrix. The technique also applies to other topologies
which are distance regular [13]. Through simulation study, we show
that, for large Hypercube systems, the proposed strategy yields
better performance in terms of response time, throughput and re-
source utilization. We compare the results with an efficient fully
distributed scheduling algorithm. The impact of communication
delay and message exchange overhead is also evaluated.

The rest of the paper is organized as follows. In the next section
we present a brief overview of existing scheduling and load balanc-
ing strategies. We discuss their limitations for large systems. In
Section 3, we give an algebraic characterization of Hypercube sys-
tems and state the problem of constructing a set of spheres. The
system model using the semi distributed structure is also presented
in that section. In Section 4, we describe the simulation environ-
ment. Results and comparisons are given in Section 5. Section 6
concludes this paper.

2. Related Work and Motivation for a New Approach

The task scheduling problem has been extensively reported in
the literature. Essentially, scheduling techniques can be classified
into two categories. In the first category, a set of communicating
tasks is considered for scheduling on the system nodes before run
time. For a set of tasks with a priori knowledge, the scheduling
problem is better described as the assignment or the mapping
problem which has been commonly solved with graph theoretic
models such as network flow [4] and heuristics [11]. These types of
techniques have also been termed as static scheduling techniques.

The second class of scheduling, frequently based on queueing’
theory, assumes a continuous atrival of tasks which may be inde-

pendent processing modules or a set of related modules with or
without communication requirements. These types of strategies,
do not assume a priori knowledge about the tasks and are also
known as dynamic load balancing strategies. The main objective
in such strategies is to balance the load across the system for a fast-
er response time and a better throughput. Most of the existing dy-

namic load balancing techniques employ centralized model [7],

[20] or fully distributed modet [1}, [6], [9], [15], [23]. In a central-

ized model, a dedicated node gathers the global information about

the state of the system and schedules the tasks to individual nodes.

On the other hand, in a fully distributed model, each node executes

a scheduling algorithm by exchanging state information with other

nodes. Fully distributed scheduling strategies employing heuris-

tics [9], [11] have been shown to yield good performance. In some
strategies, the load transfer can be initiated by the under loaded

nodes[15), [16]. Simulation methodologies [1], {6], [21], [22], [23]

have gained wide attention as the mean for predicting the perform-

ance of such strategies. A number of load balancing algorithms are
compared in [27] using a simulation model that takes into account
the traces of actual job statistics. Topology dependent models
have been reported in [26]. A hierarchical scheme has also been
proposed [25] but this scheme has many drawbacks such as high
overhead and underutilization of the system resources. A more de-

tailed classification of scheduling techniques can be found in [2].

Most of these schemes are efficient and yield a near optimal per-

formance for a system size ranging from two nodes [4] to a few tens

of nodes [27].

Not much attention has been paid to designing strategies for
large systems consisting of thousands of nodes. For these systems,
centralized and fully distributed schemes are not very suitable due
to the following reasons:
® With fully distributed schemes, optimal scheduling decisions are

hard to obtain [1], [6]. This is due to a great degree of random-
ness involved in a rapidly changing environment. Since, in a sys-
tem comprising a number of nodes, each node makes autono-
mous decisions, no node can envision the exact state of the
whote system. Thus, a node has to make either a probabilistic
decision or i has to make some kind of guess about the state of
the system.

‘e The second problem with fully distributed models is that commu-
nication delays can render a scheduling decision wrong. For
instance, a task after going through communication set up,
queueing and transmission delays over multiple links may find
out that the destination node that was originally conceived of as
the best choice has become the most heavily loaded due to arriv-
als from some other nodes [1}. These scenarios result in occa-
sional wrong decisions and system can enter into the state of in-
stability or task thrashing {1], [11] when tasks keep on migrating
without getting settled at one node.

e Fully distributed algorithms use small amount of information
about the state of the system. Since gathering large amount of
state information may decrease the accuracy [6], it becomes
more #ppropriate to collect small amount of more accurate in-
formation. Small systems can yield good performance with lim-
ited information [6], [9] but this may not be true for large sys-
tems. If the most heavily and the most lightly loaded sections of
a large network (with a diameter of the order of logarithm of the
number of processors) are a large distance apart, a fully distrib-
uted algorithm, with limited amount of information may have to
be executed for a number of iterations to balance the load
among these sections. Reduced amount of information results
in a smaller range of scheduling options and hence a narrow

899

scope of sending a task to a suitable node.

o Despite the fact that fully distributed algorithms incur less over-
head due to message exchange, this overhead linearly increases
with the system size [2], [27]. This may result in a proportional
increase in the average response time and extra communication
traffic which can impede regular communication activity.

e With a few exceptions [11], most researchers have ignored the
overhead of the scheduling algorithm which can delay the pro-
cessing of a task. This overhead is also a linearly increasing
function of the system size.

e Saturation effect in large distributed systems is a widely cited
phenomenon [11], [27} which deteriorates the performance as
the system grow in size. An incremental increase in system re-
sources may result in a decrease in throughput [11]. Itis known
that for a distributed algorithm the response time does not im-
prove with an increase beyond a few tens of nodes [27].

e Centralized algorithms do have the potential of yielding optimal
performance [7], [20], [27], but with a large system, the global
information collection becomes a formidable task [22].

o The storage requirement for maintaining the state information
also becomes prohibitively high with a centralized model of a
large system.

o In a large system with a single centralized control a huge number
of processors, the controlling node can become the bottleneck
and hence can lower the throughput [2].

e Centralized models are also highly vulnerable to failures. The
failure of any software or hardware component at the control
point can cause malfunctioning of the whole system.

It has been shown [27], that neither fully distributed nor central-
ized strategies always yield optimal performance. It is, therefore,
expected that there exists a trade~off between centralized and fully
distributed scheduling mechanisms. The aim of this paper is to
present a new approach that employs a semi-distributed scheme
exploiting the advantages of both centralized and fully distributed
models.

3. A Semi-Distributed Model for Scheduling

The proposed scheme is a two level scheduling scheme. At the
first level, tasks can migrate between different regions of the sys-
tem providing a distributed environment among spheres. At the
second level, scheduling takes place within individual &pheres
where the scheduler of each sphere acts as a centralized controller
for its own sphere. We choose Hypercube systems for our exper-
imentation, firstly because these systems are commercially avail-
able and secondly because algebraic characterization of Hyper-
cube topology can be readily exploited for our analysis.

First, we briefly present some algebraic characteristics for the
Hypercube system and introduce the notion of sphere of locality.
Next, we explain the methodology of selecting a set of nodes which
act as central control points for scheduling their respective spheres.
We show that an optimal design of a semi-distributed control is an
NP-complete problem. Subsequently, we propose an efficient so-
lution, for finding the set of schedulers, based on a combinatorial
structure called Hadamard design.

3.1. Mathematical Preliminaries

In this section, we present some definitions and terminology
which are used to characterize the binary n—cube topology and its
property of symmetry. We denote this topology as Q. and repre-
sent it by an undirected graph, A = < U, E > where U repre-
sents the set of nodes and E is the set of edges (communication
links) joining the nodes. Let 0, 1,2, .., (N -1) denote the set of

N = 2" nodes. This model is an abstraction of inter-processor
communication patterns, which is equally applicable to large mul-
ticomputer networks with 2" nodes. These results can be extended
to a large class of parallel systems which have distance regular net-
work topologies [14] (distance regularity is described below). In
that case, we can assume that there exist a virtual topology for the
network which is isomorphic to a Hypercube topology. If the num-
ber of nodes is not a power of 2", pseudo nodes can be added to
make the topology appear like a Hypercube [14].

The degree of each node represents the number of edges inci-
dent onit. The degree is assumed to be constant and is equal to n
for a binary n—cube. A pathin Q,is a sequence of connected nodes
and the length of the shortest path between nodes fandj is called
the graphical distance and is represented as L,-j. The pathin the
network having such a distance is termed as the shortest path. Let’

k = Max[L;|Vi,j,0 < i,j, < N-1].

k is called the diameter of the network A. For Q,, K=n.

Definition: Any two nodes which are at distance n, the diameter
of the network, apart are called an antipodal pair. The codewords
of an antipodal pair are complement of each other.

Definition: Given a set of nodes C, its graphical covering radiusr

in the graph A is defined as:

r= Max,‘eU(Minjec(L,'j))

Definition: A graph of diameter k is said to be distance-regular
if

YG,j.) € [0...nP%, Vix,y) € U,

Ly=1leljz€ULg=ilLy= il =}

Where | y | represents the cardinality of some sety and pj; are
constants whose values are determined by the characteristics of the
graph. The parameters 7 for Q,are given as

PEYCONE]
i o=
0

ifi +j + lis even

2 ifi +j + lis odd

Distance-regularity is an important property in terms of de-
scribing sphere of locality which in turn defines the range of a
scheduler and gives an estimate of the number of test messages
generated for gathering state information.
Definition: Let V: be the number of nodes which are at a graphical
distance i from a node . This number is a constant for Vj € Uin
Qnand is called the i-th valency. Itis given as V= Pg' = (1)
“This value is consistent with the expression for p; . Let a be a
binary codeword of length 7 and w(a) be the weight (the number of
1’s in a) of this codeword. Then for Q,

0 = an O W={al wa)=i],
\/,:=[1=a+j | VaEv?]

Definition: A Hadamard matrix Mis aj by j matrix with + 1entries,
such that MMT = JI, where I is the identity matrix and MTis

the transpose of M. The complementary Hadamard matrix, denoted’

as MC, is obtained by multiplying all the entries of M by -1. Ha-
damard matrices can exist only if j is a multiple of 4. If we replace 1
by 0, and -1 by 1, the matrix is said to be in 0-1 notation. We will
refer to this matrix as Hadamard matrix M, and use the 0-1 nota-
tion in the rest of this paper. Figure 1 shows an untruncated

8 x 8 Hadamard matrix and its complement, using 0-1 nota-
tion.

It is known that Hadamard matrices of order up to 428 exist.
Furthermore, it has been conjectured that a Hadamard matrix of
order n exists if 7 is 1, 2 or a multiple of 4. Various methods of
generating Hadamard Matrices include Sylvester’s method,
Paley’s construction and the use of Symmetric Balanced Incom-
plete Block Designs (SBIBD) [18].

3.2. Hypercube Partitioning

In this section, we discuss the criteria for partitioning of Hyper-
cube and show that the selection of a subset of nodes, referred as
schedulers in Q,,, for the purpose of carrying out scheduling can be
modeled as a problem which is NP-hard. Assuming that, some-
how, the network is partitioned into spheres, we then propose a
semi distributed scheduling mechanism. This is achieved by dedi-
cating one scheduler for each sphere and making it responsible for
(a) assigning tasks to individual nodes of the sphere, (b) maintain-
iyg the load status of the sphere and nodes, and (c) transferring
load to other spheres, if required. A scheduler is responsible for
optimally assigning tasks within its sphere depending upon the
range of the scheduler which is, in turn, determined by the size of
the sphere. The load status of each node of the sphere and the ac-
cumulative load of the sphere is known to the scheduler. Tasks can
also migrate between spheres depending upon the degree of imbal-
ance in sphere loads. To carry out load exchange at inter sphere
level, a scheduler needs to communicate with the schedulers of oth-
er spheres for exchanging load status of the spheres. The exchange
and maintenance of load information, among spheres, is carried
out with an efficient method which is fast and has a low overhead.
The details of the scheduling algorithm and information mainte-
nance scheme are described in section 3.4.4.

Let C be the desired set of scheduling nodes. There can be
various possible options to devise a semi distributed scheduling
strategy based on this set, but the performance of such a strategy
depends on the “‘graphical locations” of the scheduler nodes (dis-
tances between them) of C in Q,, and the range of scheduling used
by these nodes. The range of scheduling quantifies the graphical
distance within which a scheduler assigns tasks to the nodes of the
sphere.

Definition: Let the sphere assigned to anodej € C , be denoted
by Sij) , where i is the radius of this sphere. The number of nodes
in Si(j) is the total number of nodes lying at graphical distances 0
through i, from j. Since the number of nodes at the graphical dis-
tance / is given by valency v/}, the total size of the sphere is given as

i
ISG)] = & ‘E O"Jk . It should be noted that, in a centralized
scheme, i must be equal to the diameter (k) of the network andin a
fully distributed scheduling, using a local information among
neighbors, i is equal to 1.
Definition: A uniform set C, of centers, is the maximal set of nodes
in A , such that the graphical distance among these centers is at
least & and |SA/)| is constant (uniform) Vj € C, where i is the
covering radius of C.

We need a ¢ -uniform set C (for some § to be determined)
with graphically symmetric spheres, in order to design a symmet-
ric scheduling algorithm. The size of | C| depends on the selection
of & . Intuitively, larger ¢ yields smatler | C| but larger size of the
sphere. In addition, a number of other considerations for schedul-
ing are given below.

(1) Since a scheduler needs to migrate tasks to all the nodes in the
sphere, the diameter of the sphere should be as small as possible.
(2) | C| should be small, so that the global overhead of scheduling

algorithm in terms of message exchange, maintenance of informa-
tion and storage requirements is small.

(3) The size of the sphere should be small, firstly, because needs to
send/receive | S{j)| messages and, secondly, because information,
storage and maintenance requirements increase with the increase
in sphere size. However, we can notice that reducing | C] increases
the sphere size. We now describe the complexity of selecting a
& —uniform set (C).

‘Theorem 1: For a given value of § > 2,

(a) Finding |C| is NP-hard.

(b) Determining the minimum sphere size is also NP-hard.
Proof: For the proof of (a), see [24]. Finding the minimum sphere
size, | SAj)| Vi € C, requires us to determine the minimum value
of £, which is equal to the covering radius of the set C. Finding the
covering radius of a code C in Q,(and for any sub space of Q) is
NP-hard problem [17]. Since finding the minimum sphere size is
equivalent to finding the covering radius, the complexity of the
whole problem will not be less than NP-hard.

3.3. Identification of Scheduler Sites

For Hypercube systems, we present an efficient solution for de-
termining the set C. The solutionis “efficient” in the sense that the
size of the selected set C is considerably small and it is of the order
of logarithm of the size of the Qnnetwork . This results in a consid-
erably small storage requirement. At the same time, the whole net-
work is uniformly covered and each sphere is symmetric and equal
in size. The set C of scheduler nodes is selected from the code
generated by the rows of Hadamard matrix M and its complement

MEC The set C is also called Hadamard code. Note, |C| =2n.
Following are the main reasons for this selection (we might as well
select other codes such as Hamming code or BCH codes, but these
codes have certain limitations as described below).

1. A Hadamard code is a code with rate approaching zero,
asymptotically [24] where rate of a code C with length n is defined
as 78 o« (log, |C|/n)[18]. This results in the size of a Hadamard
code being considerably smaller than the size of a Hamming code
ina Q. In fact, the size of Hadamard code is proportional to the
logarithm of the size of the network Q,. On the other hand, the rate
of a Hamming code is 1, which results in a large size of the code
and hence the set |C].

2. The range of values of n for which a Hadamard code exists,
considerably exceeds the range of n for which a Hamming code
exists. For example, it is conjectured that a Hadamard matrix ex-
ists for all values on n which are multiple of 4. The smallest order
for which a Hadamard matrix has not been constructed is 428 [18].
On the other hand an extended Hamming code only existsif nis a
power of 2. Similarly, a BCH code exists only for limited values of
n.

3. The covering radius of C is known [18] for many values of n
which are even powers of two.

Due to the above mentioned advantages, we use Hadamard
codes to construct the set C. Since, an untruncated Hadamard
code exists only when n is a multiple of 4, selection of the set C can
be made by modifying this untruncated code in various ways, to
form the remainder of values. These modifications are described
below.

Casea. Qnwithnmod4 = 1. For this case, consider the set C

obtained from untruncated Hadamard matrices M and ME (in0-1
notation) of size n-1. By appendinganall 0’s and anall I’s column,

"toMand MC respectively, at any fixed position, say at extreme left,

901

we generate the modified set C for the network under consider-
ation.

Caseb: Q,with nmod4 = 2. This caseis treated the same way as
the Case (a), except we consider the set C obtained from untrun-
cated Hadamard matrices (in 0-1 notation) of size n-2 and append

two columns 0 and 1to M and 1and 0 to MC However, the all 0’s
row in M is augmented with bits 00 rather than with bits 01. Simi-

larly, the all I’s row in MCis augmented with bits 11 rather than
with bits 10.
Casec: Q,with nmod 4 = 3. For this case, the set C consists of the

rows of the truncated matrices M and MC in 0-1 notation.

A truncated Hadamard matrix (the one without all 1's column)
using Symmetric Balanced Incomplete Block Design (SBIBD) [18]
can be easily generated, since most of the available SBIBD’s are
cyclic by construction. For this purpose, all the blocks (which cor-
responds to all the elements of the set C, besides codewords with
all 0’s and all I’s) can be generated by taking n-1 cyclic shifts ofa
single generator codeword. Such generators, for different values of
n—1 can be found in a straight forward manner, using the so called
difference set approach [18]. Table 1illustrates the generator code-
words for various values of n-1. The set of scheduler nodes for Q7
can be obtained by first constructing codewords for Q7. The gen-
erator codeword for Q7 is 0010111. The additional 6 codewords
are generated by taking 6 left cyclic shifts of this generator.

The complete set C then consists of rows with all0’s and all
I's plus the following 7 codewords and their complements
C={0010111, 0101110, 1011100, 0111001, 1110010, 1100101,
1001011, 1101000, 1010001, 0100011, 1000110, 0001101, 0011010,
0110100}. For Qg, the set C can be produced by restoring the trun-
cated matrices from the above set, which is the same as shown ear-
lier in Figure 1 where each row of the matrix represents the binary
address of the 16 schedulers.

The set, consisting of codewords, given in Figure 1, can also be
used to generate the set C for the Qg network, by appending an all
0’s and all 1’s column (say at extreme left position), of matrix M

and M€, respectively. Also, the same set can be used to generate
the set C for Q9. as described in the procedure of Case (b).

3.4. Distributed System Meodel

A distributed system can be modeled as a collection of process-
ing nodes connected by a communication network. As mentioned
above, we assume that a virtual network isomorphic to a Hyper-
cube exists. The nodes contain general purpose resources such as
memories, Processors, databases etc., and provide an execution
environment for the tasks entering into the network. The network
is assumed to be homogeneous where all nodes are identical. The:
models of network, processing node and scheduler are briefly de-
scribed as follows.

3.4.1. Network and Sphere Model

The network of a distributed system provides high speed com-
munication channels for direct communication between any pair
of nodes. The network traffic can be viewed at two levels. At the
higher level, task migration takes place between different spheres
and at the lower level, tasks are transported from the schedulers to
the nodes of their respective spheres. Both kinds of task move-
ments incur communication delay which is dependent on the task
transfer rate of the network. Similarly, at the higher level, message
passing takes places between schedulers for exchanging the infor-
mation about the accumulative loads of spheres. Atthe second lev-

el, a node only need to send a message to its scheduler when it fi-
nishes a task.

3.4.2 Node Model

A node in is assumed to be an independent processing element
with its own local memory and operating system. We assume that
tasks entering in the network are independent program modules.
These independent task are capable of being serviced at any node
(except for the transfer cost due if task is migrated to another node)
irrespective of where they are submitted. Tasks scheduled at a
node are entered in the execution queue which is served on FCFS
principle.

3.4.3. The Scheduler

Tasks generated at the nodes of a sphere or migrated from other
spheres are received at the scheduler. The Scheduler, which is a
processing element along with some memory for keeping load in-
formation, is responsible for deciding where a task should be as-
signed. We assume that the set of schedulers, selected through the
Hadamard code, are embedded on the actual system topology. In
other words, the nodes that are designated as schedulers perform
their regular task execution as well as they carry out the rule of the
scheduler. Alternatively, we can assume that those nodes are aug-
mented by special purpose processing elements that perform the
scheduling.

3.4.4. Information storage and maintenance

As discussed above, a scheduler keeps two types of informa-
tion. First, it maintains the accumulative load of the sphere which
is simply the total number of tasks being serviced in that sphere at
any point of time. This load index is adjusted every time a task
enters a sphere or finishes execution. The other type of informa-
tion is a linked list that points to the nodes of sphere according to
their loads, and a load entry for each node of the sphere. The list is
maintained in a non decreasing order with the first element of the
list pointing to the most lightly loaded node. When the scheduler
assigns a task to the node pointed to by the first list entry, the load

entry of that node is updated. The node is removed from the head
of the list and re-inserted in the list according to its new value of

load. This update operation is done by using some fast recursive
algorithms e.g. Binary search. When a node finishes a task, it in-
forms its scheduler which adjusts the position of the node in the
linked list according to its new value of load. In the proposed semi-
distributed structure, it is possible that a node is shared by more
than one scheduler. For example, in the case of Qs network, a
node is either shared by one scheduler or it is shared by four sched-
ulers. In case a node is a shared, the scheduler that assigned the
task informs the other schedulers so that the load entry of that
node could remain consistent. A shared node has to inform all of
its schedulers whenever it receives or finishes a task. Therefore,
load the load entries of the shared nodes in different spheres re-
main consistent.

3.5. The scheduling Algorithm

Tasks are generated at all nodes of the network and the nodes
send them to their respective schedulers (in case a node is a shared
among schedulers, one scheduler is randomly chosen). In our pro-
posed semi distributed scheme, we assume that the operating sys-
tem routes a newly generated task to a scheduler.

One parameter associated with the scheduling algorithm is the
load threshold which could be set as zero or one depending upon
the communication rate of the channels. When a task arrives, the
scheduler first checks the load entry pointed by the first element of
the linked list which shows the load of the most lightly loaded node

902

in the sphere. If the load entry of that node is less than or equal to
the threshold, then the scheduling algorithm stops here, the linked
list is updated and the tasks is sent to the most lightly loaded node.
Suppose the load threshold is set to one. Then if an idle node is
available in the sphere, it is obviously the best possible choice.
Even if the most lightly loaded node already has one task inits local
queue, there exist chances that by the time the task migration from
the scheduler to that node takes place, that node can become idle.
If the task is sent to another sphere, it may not find a better node in
the new sphere after going through sphere to sphere delay. The
scheduler considers sending a task to another sphere only if the
load of the most lightly loaded node in its sphere is greater than the
load threshold. In that case, the scheduler sends queries to other
schedulers. The other schedulers respond by sending the the val-
ues of the cumulative loads of their respective spheres. One of the
remote spheres with cumulative load less than that of local sphere
is randomly selected. If there is no sphere with cumulative load less
than that of local sphere, the task is sent to the most lightly loaded
node in the local sphere, itrespective of its load. The reason for
selecting a sphere randomly is to avoid the most lightly loaded
sphere becoming a victim of task dumping from other spheres.
Choice of the load threshold should be made according to the
communication rate of the channels. For example it would be more
beneficial to set load threshold more than 1if the task transfer rate
is very low.

4. Simulation Methedology

The proposed scheme was simulated to analyze its performance
on a Qs network having 256 nodes. For this network, the set C of
scheduler includes 16 nodes whose addresses are shown in Figure
1. The covering radius for this network is 2 [18]. The valencies

Vb, Vi and v}, for all J, have values 1, 8 and 28 respectively, corre-
sponding to total volume of the sphere | S4j)|equalto37. Figure2
shows one scheduler (with binary address "00000000°) and other
nodes in its sphere. The addresses of the nodes for

Vb,V and vk, Vj , can be obtained by using the expressions given in
Section 3.1. The number of spheres being shared by a node as a
function of covering distance (f) is given in Table 2. It is obvious
from Table 2 that the minimum fis 2, the covering radius of C. For
a Qs network, a node lies in one sphere or four spheres.

The simulation was written in ’C’ on an Encore Multimax con-
taining 16 CPU’s and 128 megabytes of memory. In each simula-
tion run, 20,000 tasks were generated. The results were obtained
under steady-state conditions and each data point was obtained
by taking the average of a large number of simulation runs with
different random number streams. All results were obtained with
a 95 percent confidence interval, with the size of the interval vary-
ing up to 5 percent of the mean value. A number of parameters
were varied, to observe the sensitivity of the proposed strategy. The
parameters varied included the system load, channel communica-
tion rate, transfer limit and the load threshold. Task generation was
modeled as a Poisson process with average arrival rate A tasks/u-
nit-time, identical for all the nodes. The execution and communi-
cation times of tasks were exponentially distributed with a mean of

1/4s time-units/task and 1/4c time-units/task, respectively.

5. Performance Evaluation and Comparison

The main performance measures, selected for analysis, were the
mean response time of a task, standard deviation of node utiliza--
tion, throughput, and the average number of messages generated.
A number of simulation runs were carried out to study the effect of

various parameters on these performance metrics.

For comparison we selected two additional schemes. The first
scheme was the no load balancing scheme that used the same
workload and executed tasks on the nodes they originally arrived
without making any task migration. The other scheme was a fully
distributed scheme that was proposed in other studies [9], [27]. In
this fully distributed scheme, every node executes the scheduling
algorithm. Tasks can migrate between nodes depending upon the
decision taken by the algorithm. Upon arrival of a task, a node gets
the load status from its immediate neighbors (the load status is the
number of tasks scheduled at that node) and if the local load is
greater than the most lightly loaded neighbor, the task is sent to
that neighbor; otherwise it is executed locally. The information ex-
change between the neighbors can be done periodically or instan-
taneously. The periodic information exchange incurs less over-
head but presents a less accurate information as compared to the
instantaneous exchange. For comparison we selected instanta-
neous information exchange version, that is, whenever a task ar-
rives at a node from the external world or from a neighbor, the load
information from the neighbor is obtained. If the task is to be
transferred to another node, the neighbor with the lowest load is
selected. A taskis allowed to make many migrations untilit finds a
suitable node or the number of migrations made exceed a prede-
fined transfer limit. Due to heavy task migrations, a node has to
maintain a communication queue for each neighbor. The scheme
has been studied through simulation and has shown to exhibit high
performance with a wide range of parameters. It is also known as
the best choice scheme [9]. The time to execute the scheduling algo-
rithm is assumed to be zero, both for fully and semi-distributed
schemes.

5.1. The Response Time Comparison

The curves of mean response times versus system load with all
three strategies are shown in Figure 3. Both fully and semi distrib-
uted schemes yield a substantial improvement in response time
over the no load balancing scheme at all loading conditions. It
should be mentioned that the parameters we selected in simula-
tion, were those that produced the best achievable performance for
the fully distributed scheme. The task transfer limit, for instance,
was chosen as 12 which provided the best results through simula-
tion. The fully distributed schemes, including the one under dis-
cussion, are critically dependent on the channel speed of the net-
work. To make fair comparisons, we considered a fairly fast net-
work with a communication rate of 20 task/time-unit compared to
service rate of 1 task/time-unit. The performance of the fully dis-
tributed strategy does not improve if the channel rate is further in-
creased. The load threshold for the semi distributed strategy was
set to zero.

The average response time of the proposed semi distributed
scheme is shown to be superior to the fully distributed scheme, in
Figure 3. It is to be noted that with utilization ratio below 0.6, the
response time curve with semi-distributed scheme is rather
smooth. This is due to the fact that under low loading conditions, a
scheduler is usually able to find a node whose load index is less
than or equal to the load threshold which is set to zero in this case.
In other words, the scheduler always makes use of an idle node. At
load levels slightly higher, the inter-sphere task migrations occur.
At a very high load, the tasks migrate frequently between spheres.
The load is balanced between heavily and lightly loaded regions of
the network. This retains the improvement in response time even
under heavy loading conditions.

Since there is no random task migration activity within a
sphere, the communication links can be designed to be dedicated

903

links operating in a circuit switched mode. The task transfer mech-
anism from scheduler to nodes can be deterministic and can be de-
signed as one to many broadcast, in a pipelined fashion [12). Al-
though, for the sake of comparison with the fully distributed ’
scheme, we considered the task transfer time, from the scheduler
to other nodes, in the simulation model, we believe that if this is
done in the pipelined fashion, the task transfer delay would be neg-
ligible and the performance of the semi distributed scheme would
be further improved.

At the higher level, the migration of tasks incurs delays between
the schedulers. In the proposed semi-distributed design, all sched-
ulers are at equal distance from each other except for the anti-po-
dal pair. The schedulers of the anti-podal pair are located at a dis-
tance equal to diameter of the network (These are the scheduler
nodes whose Hadamard codes are complementary). Therefore,
with a |C| = 2n, each scheduler is at equal distance from 21 -2
schedulers (excluding itself and its complement). We also conjec-
ture that if the task generation rate at nodes is not uniform, the
semi distributed strategy would yield even better performance
since the load can migrate between all parts of the network which is
not possible with fully distributed strategies, within short time.
5.2. Load Distribution

In addition to providing a fast job turn around time, load bal-
ancing provides a better resource utilization by trying to keep all
nodes equally busy. Standard deviation of total utilizations of
nodes is a measure of goodness of a load balancing strategy giving
an estimate of smoothness of load distribution. Figure 4 shows
standard deviation curves for all three schemes with the parame-
ters same as those for Figure 3. The curve for the noload balancing
scheme presents the variations in utilization and actually indicates
the imbalance in work load assigned to the system. Low standard
deviation, for both load balancing schemes, indicates a more uni-
form distribution of load. However the semi-distributed scheme
results in a better load balancing as indicated by low values of stan-
dard deviation. This is due to the scheduling algorithm executed
by scheduler since the nodes with identical loads are handled on an
equal priority basis.

If a node is assigned a task, its position in the linked list is ad-
justed and the next node in the list is considered for the next task.
At high load, occasional spikes of high loading are smoothed out
by sending load to other spheres. High variations in utilizations at
low loading conditions are due to the fact that no inter-sphere task
migration takes places and some spheres may be get more task
than others.

5.3. Throughput

Figure 5 shows the enhancement in throughput gained with the
semi-distributed scheme at medium to high system load. The
throughputs at low loading conditions, for all three schemes, essen-
tially remain the same. The lower value of throughput with the no
load balancing scheme can be attributed to the increased queue
lengths at individual nodes acting as bottlenecks for tasks.

The fully distributed scheme equalizes the queue lengths,
thereby yielding a subtle improvement in the throughput but at the
cost of task accumulations in the communication queues which
can get considerably large at heavy loads. From Figure 5, we ob-
serve that the throughput for fully distributed scheme starts con-
verging to the curve for the noload balancing scheme. Semi distrib-
uted scheme yields further improvement and does not suffer from
this problem.

5.4. Sensitivity To Communication Delay

Fully distributed load balancing strategies suffer because of the
communication delays. This is due to channel contentions caused
by the high task transfer rates. High transmission delay not only
slows task migration but also results in an increase in queuing
defay in the communication queues. With slow communication,
the state of the system can change by the time a task reaches its
destination [1], and the task may have to be redirected to another
node. This may result in thrashing of tasks [1][5].

The impact of communication delay, on the task response time
depends upon the ratio of mean communication delay to mean ser-
vice time. It is known that if this ratio is greater than one, then the
response time with load balancing may even exceed the response
time obtained with no load balancing [1], [19].

Figure 6(a) and Figure 6(b) shows the percentage improvement
in average response times gained with fully and semi distributed
schemes over the no load balancing scheme for varying task trans-
fer rates, at low and high loads respectively. The load threshold
was set to one for task transfer rates between 2 task/time-unit to 10
tasks/time-unit and to zero for the range between 12 tasks/time-
unit to 20 tasks/time-unit. The transfer limit for the fully distrib-
uted scheme was also varied from 7 to 12. The results indicate that
even at a task transfer rate of 2 tasks/time-unit (and mean commu-
nication to service time ratio equal to half), the response time im-
provement with semi distributed scheme is almost two times the
improvement gained with the fully distributed scheme. At low
load, the response time improvement yielded by semi distributed
strategy is nearly independent of the transfer rate beyond 6 tasks/
time-unit. This is because most of the time the scheduler is able to
find a node with zero or one task in its sphere. This was confirmed
because less than 5 percent of the total tested tasks made any mi-
gration out side the spheres, even with load threshold set to zero.
Figure 6(2) also indicates that at low load, the response time with
fully distributed strategy chinges rapidly between transfer rates of
2 task/time-unit to 10 tasks/time-unit. This clearly indicates that
fully distributed scheme is more susceptible to channel delays.

As depicted in Figure 6(b), at high loading conditions, the semi
distributed strategy exhibits some dependency on the channel rate
due to the delays incurred during inter-sphere communications..
This dependency factor diminishes if the transfer rate is increased
beyond 8 tasks/time-unit. In contrast, the response time obtained
with the fully distributed strategy shows steady improvement up to
a transfer rate of 1620 tasks/time-units, after which there is negli-
gible improvement. The gain in performance with semi distributed
strategy over the fully distributed strategy keeps on increasing with
transfer rate up to 20 tasks/time-unit.

5.5. The Message Overhead

One of the goals of the proposed strategy was to reduce the
communication traffic due to the control overhead. The messages
carrying control information can delay normal task migrations
[22]. In the proposed strategy, the number of messages are small.
A node belonging to one sphere has to send only one message toits:
scheduler when it finishes a task. If a node is shared among more
than one spheres, then the scheduler assigning the task to that node
‘'has to send messages to the spheres that share that node. Similarly,
upon finishing a task, the node has to inform all of its schedulers.
At the sphere level, a scheduler only communicates with other
schedulers only when it considers a task migration. As mentioned

above, the number of schedulers is only of the order of log N.

Therefore, the number of messages is also small. On the other
hand, in the fully distributed environment, a node has to send and

receive messages from all of its neighbors, every time a task is to be
scheduled. If a task makes many migrations, each time a node has
to exchange those messages. Figure 7shows the average number of
messages per task (this was calculated by dividing the total num-
ber of messages by the total number of tasks in a simulation run).

At low load, the overhead for the fully distributed is smaller
since the nodes do not send any messages due to their local loads
being very low, and tasks get scheduled without requiring any
transfer. However as the load increases, the fully distributed strat-
egy starts inducing high overhead which becomes almost three
times the overhead incurred by the semi distributed strategy. Al-
though, the message delay was assumed to be zero, itis hoped that,
if considered, the average delay due to these messages will be less
for semi-distributed scheme as compared to the fully distributed
scheme. This is because the fully distributed model generates
more messages than the semi distributed scheme.

6. Conclusions

In this paper, we have proposed a semi distributed approach
for task scheduling in large parallel and distributed systems and
have presented the concept of uniform covering of spheres with
centralized control points. We have presented an efficient scheme
for partitioning Hypercube systems for task scheduling. The ap-
proach is applicable to distance regular topologies. We have eva-
luated the performance of the proposed scheme through simula-
tion and, with a comparison with fully distributed scheme, have
shown that the new approach yields a better performance in terms
of response time, throughput and load distribution. Due to an effi-
cient scheduling and information collection method, the new ap-
proach has exhibited a low overhead in terms of number of mes-
sages generated. The proposed scheme was found to be less sus-
ceptible to channel delay.

Acknowledgements

We gratefully acknowledge the constructive comments from
David Andrews. We are also thankful to NPAC (North East Paral-
lel Architecture Center) for allowing us to use Encore Multimax.

References

[1] Ishfaq Ahmad and Arif Ghafoor, "Performance Evaluation of De-
centralized Load Balancing Methodologies for Distributed Sys-
tems,” paper submitted for publication.

[2] Katherine M. Baumgartner, Ra.l?h Kling and Benjamin Wah, ” A
Global Load Balancing Strategy for a Distributed System,” in Proc.
of. IE9)3EE1 (C)'zonf.' on Distributed Computing Systems, Hong Kong, 1988
pp. 23-102.

[3] E. Bannai and T. Ito. Aigebraic Combinatorics and Association
Schemes. Benjamin-Cummings (1984).

[4] Shahid H. Bokhari, "Dual Processor Scheduling with Dynamic Reas-
signments,” IEEE Trans. on Software Eng. vol. SE-5, pp. 341-349,

July 1979.

[5] Raymong M. Bryant and Raphael A. Finkel, ” A Stable Distributed
Scheduling Algorithm,” in Proc. of 2nd Intl. Conf. on Distributed
Computing Systems, April 1981, pp. 314-323.

[6] Thomos L. Casavant and John G. Kuhl, ” Analysis of Three Dynamic

Load-Balancing Strategies with Varying Global Information Re-

uirements,” in Proc. of 7-th Intl. Conf. “on Distributed Computing
ystems, West Germany, April 1987, pp. 185-192.

[7] Yaun-Chien Chow and Walter H. Kohler,”"Models for Dynamic
Load balancing in Homogeneous Multéple Processor Systems,”
IEEE Trans. on Computers, vol. ¢-36, no. 6, pp. 667-679, May, 1982.

[8] DARPA, ”Strategic Computing: New Generation Computing tech-
noolo 9,;3Defénce Advance Research Project Agency, Arlington, Va,
ct.

9] Derek L. Eager, Edward D. Lazowska and John Zahorjan,"AdaEp-
tive Load Sharing in Homo%eneous Distributed Systems,” JEEE
Trans. on Software Eng. ,vol. SE-12, pp. 662-675, May 1986.

[10] Kemal Efe, "Heuristic Models of Task Assignment Scheduling in
Distributed Systems,” IEEE Computer, June 1982, pp. 50-56.

{11] Ahmed K. Ezzat, R. Daniel Bergerson and John L. Pokoski, "Task
Allocation Heuristics for Distributed Computing Systems, ”in

Proc. of Intl. Conf on Distributed Computing Systems. pp. 337-346.

[12] G. C. Fox, S. W. Otto nd A. J. G. Hey, ” Matrix algorithms on a
hypercu;be I: Matrix multiplication,” Parallel Computing,, 4 (1987),
pp. 17-31.

[13] Arif Ghafoor and P. Bruce Berra, ” An Efficient Communication
Structure for Distributed Commit Protocols,” IEEE Jour. on Se-
lected Areas of Communications, vol. 7, no. 3, pp. 375-389, April. M
1989. =

[14] Arif Ghafoor, S.A Sheikh, and P. Sole, “Distance-Transitive
Graphs for Fault-Tolerant Multiprocessor Systems”, Proc. of Intl.
Conf. on Farallel Processing, August 1989, Illinois, pp. I. 176~ 1. 180.

[15] Anna Ha’c and Xiaowei Jin, "Dynamic Load Balancing in Distrib-
uted System Using a Decentralized Algorithm,” in Proc. of 7-th
Intl. Conf. on Distributed Computing Systems, West Germany, April
1987, pp. 170-178.

[16] Frank C. H. Lin and Robert M. Keller, "Gradient Model: A de-
mand Driven Load Balancing Scheme,” in Proc. of 6-th Intl Conf on
Distributed Computing Systems, Aug 1986, pp. 329-336.

[17] A. M. McLoughlin, ”The Complexity of Computing the Covering
Radius of a Code,” IEEE Trans. on Inform. Theory, col IT-30, pp.
800-804, Nov., 1984.

[18] E.J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correct-
ing Codes, vols. I and II, New York: North Holland, 1977.

[19] R. Mirchandancy, D. Towsly and J. A. Stankovic, ” Analysis of Effect MC
of Delays on Load Sharing,” IEEE Trans. on Computers, vol. 38. no.
11, pp. 1513-1525, Nov. 1989.

[20] Lionel M. Niand Kai Hwang, ”Optimal Load Balancing in a Multi-
ple Processor System with Many Job Classes,” IEEE Trans. on Soft-
ware Eng., vol. SE-11 pp. 491-496, May 1985.

[21] Krithi Ramamritham, John A. Stankovic and Wei Zhao, ”Distrib-
uted Scheduling of Tasks with Deadlines and Resource Require-
ments,” IEEE Trans. on Computers, vol. 38, no. 8. pp. 1110-1123,

Aug. 1988. : ..
g Figure 1. An 8 x 8 Hadarmard Matrix in 0-1 notation
[22] Kang G. Shin and Y. -C. Chang, "Load Sharing in Distributed, and its complement
Real-Time Systems with State-Change Broadcasts,” IEEE Trans.
on Computers, vol. 38, no. 8. pp. 1124-1142, Aug. 1988. '

[23] John A. Stankovic, ”Simulation of Three Adaptive Decentralized
Controlled Job Scheduling Algorithms, ”Computer Networks, June
1984, pp. 199-217.

[24] L. J. Stochmeyer and V. V. Vazirani, "7NP-Completeness of some
Generalization of the Maximum Matching problems,” Information Table L.
Proc. Letters, vol. 15, pp 14-19, 1982. Generator Codes for different lengths

[25] A. M. Van Tilborg and L. D. Wittie, "Wave Scheduling - Decentral-
ized Scheduling of Task Forces in Multicomputers,” [EEE Trans. on
Computers, vol. C-33, no. 9, pp. 835-844, Sept. 1984.

[26] Benjamin W. Wah and Jei-Young Juang, ”An Efficient Protocol for
Load Balancing in CSMA/CD Networks,” in proc. 8-th Conf on 7 0010111
Loacl Networks, Oct. 1983, pp. 55-61.

27 SO%.’“"“ Zhou, "Performance Studies of Dynamic Load Balancing 1 10111000107
in Distributed Systems,” Ph.D. Dissertation, Univ. of California, 15 111101011001000
Berkeley, Sept. 1987.

o oo o o o o o
- = o= 0O O
(=R = == T S == R
O O e e =m OO
OO e = = OO

(= e = B = R S]
= O - O O = O
_ =m0 = O O = O

L T S S S e
(== R e - R
-0 00 - O
L B R)
== = = =T
_O e OO O e
(= - R =
== = L = R)

Length =n -1 Generator Codewords

19 1001111010100001101

905

Table II.
Distribution of nodes shared by different spheres
as a function of the covering radius
f —>
2 3 4 5 6 7 8

Distance of 0
2 node from C 0 0] 14] 14| 14| 14 15
1
l 1 8 8| 15] 15} 16| 16
2
4 41121 12| 16| 161 16
01001000 00101000 00011000
10001000 00100100
00110000 00010100
01010000 00001100
00001000
10010000 00010010
01100000 00010000 00000100 46001010
00100000
00000000
10106000
o 50000010 00000110
01106001 01000000 00000001 20010001
00100010 00001001
11000000 00000101
01000001 00000011
01000010 10000100
01000100 10000001 10000010
Figure 2. The Scheduler 00000000 and it
corresponding sphere in Qs Network
(time units)
9.6
B No Load Balancing
7| & PouyDistributed
8.6 X Semi Distributed
T 7.6
6.6—
. |
g 5.6
E]
§ 4.6
&]
3
2 36
=
g]
3
= 2.6
1.6
0'2 T I T ‘ T ‘ T I T | T I T I T] T
01 02 0.3 04 05 06 07 08 039

System Load ——

Figure 3. Mean Response Time versus System Load

906

—

Standard Deviation of Utilization

XxXbn

No Load Balancing
Fully Distributed
Semi Distributed

A

T

| R N PR LR T
0.2 03 04 05 0.

System Load

A LN DAL
6 0.7 0.8 0.9
e

Figure 4. Standard Deviation of total node utilization

at different loading conditions

Throughput

0.954

0.85+

} 3L]

No Load Batancing
Fully Distributed
Semi Distributed

T T T T T

0.8 0.9
—_—)

Figure 5. Effect of system load on throughput

T T T

06 0’7

System Load

% 75 40
4 1|2 semi Distributed
T 35| rully Distrivuted
5
§
«

2 &

g 3

E g

g =

e %

2 "

z £

g

& z

40 TITTT wvulxwulvw,..lwv |_
TS R s o o5 s 45 s 1 20
0. 0.2 03 0. 0.5 06 07 08 09 1.0
Task Transfer Rate (tasks/time-unit) > ! *
. i . System Load —>
Figure 6 (a). Percentage improvement over no load balancing Y
versus channel communication rate at low load .
(System Load = 0.6) Figure 7. Average number of messages per task versus system load

—
&

Response Time Improvement

T T T T T T T T T
PP 7 "R 766 2%
Task Transfer Rate (tasks/time-unit) >

Figure 6 (b). Percentage improvement over no load balancing

versus channel communication rate at high load
(System Load = 0.9)

907

